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Abstract. Results are given for computer searches for those configurations of N points on 
the surface of a four-dimensional hypersphere which have maximum values of the least 
angular distance between pairs of points. The generalised inverse was used to solve the 
equations giving the corrections to the hyperspherical coordinates in terms of the overlaps 
of the domains of neighbouring spheres. It is concluded that the use of this curved space 
offers an alternative to cyclic boundary values for simulations involving the packing of 
points in three dimensions. 

1. Introduction 

The Fejes problem (Fejes Toth 1952) consists in finding the distribution of N points on 
the surface of a sphere such that the least distance between any two points is a 
maximum. This is, of course, equivalent to packing equal circles or spheres of 
maximum radius on the surface of a sphere. The problem has been reviewed at intervals 
(Whyte 1952, Coxeter 1962) and the fullest table of putative solutions (running up to 
N = 60) is due to SzBkely (1974). In general, solutions are found only by trial and error 
and in only a few cases are proofs available that particular solutions are optima. 
Configurations are usually established by demonstration and remain until superseded 
by counterdemonstration. 

In order to search for possible solutions a computer program (in BASIC) has been 
developed using time-sharing facilities. The algorithm is simply to take a random 
arrangement of points and to move them simultaneously away from each other until 
they are the maximum distance apart. Results for the three-dimensional Fejes problem 
will be published separately. It was shown that there are often a number of configura- 
tions with values of D (the value in degrees of the least distance between a pair of 
points) sometimes within 0.1" of the best packing. Such configurations with similar 
packing densities may be inaccessible one from the other without considerable re- 
arrangement. 

This program could easily be adapted for any desired measure of the distance 
between points and it has been used for the present study of the four-dimensional Fejes 
problem. Hyperspherical coordinates were used to define the position of a point on the 
surface of a hypersphere of unit radius: 

x1 = r COS e 

0305-4470/80/113373 + 07$01.50 @ 1980 The Institute of Physics 3373 



3374 A L Mackay 

x 2  = r sin 8 cos q5 

x 3  = r sin 0 sin q5 cos Q 

x4 = r sin 8 sin q5 sin Q. 

With r =  1 this ensures that x : + x ; + x : + x % =  1. 

2. Calculation 

The angular distance d,, between two points i and j can be calculated from an extension 
of the cosine rule, readily obtained from the scalar product of the two position vectors x, 
and x, as 

cos d,, = cos e, cos e, +sin 8, sin e,(cos q5\ cos 4, +sin q5, sin q5, cos($, - 4,)). 

The program proceeds as follows. 
(1) Set'N, the number of points, and D, the target distance in degrees. 
(2) Place the N points at random on the hypersphere. 8 = cos-' (xl) is chosen so 

that x1 lies uniformly in the range +1 to -1 ( e  is between 0" and 180"). The remaining 
angles are chosen to lie uniformly in the range 0" to 360". 

( 3 )  Calculate the angular distances d,, for all pairs. Select those for which d,, is less 
than D, i.e. overlapping pairs. 

(4) Make a table of all points concerned in overlaps and of the amounts by which 
they overlap. M points are involved in the P distances which are less than D. Since 
each point has three positional coordinates, we must calculate corrections to the 3M 
coordinates from the P values of discrepant distances. Usually 3M is greater than P, 
that is, there are more unknowns (the corrections to the coordinates) than there are data 
items (the values of the overlaps). 

( 5 )  The matrix M,, of differential coefficients, describing how each of the P 
distances changes when each of the six coordinates on which it depends is changed, is 
calculated from formulae obtained by differentiating the cosine rule given above. 

(6)  We then have the matrix equation relating the 3M corrections AB, to be applied 
to the coordinates to the P discrepancies Ah,, Ah ,  = M,,AO,. This equation is solved by 
inverting M,,, which is usually rectangular. It has no ordinary inverse, but a routine 
which calculates the generalised (Moore-Penrose) inverse is used. This gives a solution 
which minimises llAh, --M,,Ae,ll. 

(7)  These corrections are applied, the new distances between points are calculated, 
and the whole procedure is repeated until the target distance is reached or approached. 
At each cycle the minimum distance between points is printed out. 

(8) The target distance is reset at intervals until the points settle into a stable 
close-packed configuration. This is then printed out as a table of distances and of 
hyperspherical coordinates. From these a graphical plot or network of nearest neigh- 
bours can be obtained. 

3. Calculation of the generalised inverse 

The core of the program is the use of the generalised inverse. This is very convenient for 
handling molecular configurations where (in three dimensions) N atoms have 3N 
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Cartesian coordinates but only 3N - 6 independent parameters describing their mutual 
positions and only 3N - 6 normal modes of vibration. In the present case of N points on 
a hypersphere, there are also 3N coordinates and only 3N - 6  are independent. 

If AX = H is a set of linear equations and A +  is the generalised inverse of A ,  then 
the solution X = A'H gives the correct answer if A is non-singular. If there are more 
equations than unknowns (and these may be observational equations inconsistent with 
each other), then X = A+H gives the least-squares solution which minimises llAX - 
HI[. If there are fewer equations than unknowns part of the solution remains arbitrary, 
the full solution being X = A+H + [ I  -A+A]Z  where Z is an arbitrary vector. If the 
arbitrary part is omitted, then X = A+H minimises the shifts applied. 

Routines for the generalised inverse are available in ALGOL and in FORTRAN in the 
Numerical Algorithms Group suite of programs, but here the inverse has been 
calculated by an iterative method (Gupta 1971). If Sk is the kth approximation to A +  
then S k + l =  Sk(21-ASk). Iteration is continued until the trace of (21-ASk), which 
converges to the rank of A ,  is sufficiently close to an integer. 

In a physical sense the configuration of points on the hypersphere floats, since no 
particular points are fixed as defining axes. As no points are fixed, none is treated 

Table 1. The packing of points on the surface of a four-dimensional hypersphere. D is the 
maximum value found for the least distance between pairs of points among the N points on 
the surface. It is quoted in degrees. 

N D D (predicted) Coordination 

3 
4 
5 

6 

7 

8 

9 
10 

11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
24 
25 

120 

120 = cos-' (-4) 
109.471 = COS-' (- f) 
104.478 =COS-' (-a) 
90 

90 

90 

>80*64 
80.406 =COS-' (A) 

>76.669 
75,522 =COS-' (a) 

>71.98 
>71*440 
>69*227 
>67*191 
>65.196 
>64.939 
>64.117 
>64*070 

>5538 
60 =cos-' (i) 
36 

120.512 
109.492 
101.644 

95.650 

90.860 

86,904 

83.558 
80.675 

78.152 
75,918 

73,919 
72.115 
70.476 
68.976 
67.596 
66,320 
65.136 
64,032 
60.256 
59.441 
35.237 

4-dimensional simplex 
4 at cos-' (-$I 
Cross polytope less two 
points 
Cross polytope less one 
point 
Cross polytope 
6 at 90; 1 at 180 

Midpoints of edges of simplex 
6 at cos-' t i ) ;  
3 at cos-' (-$ 

Ring of 4 octahedra 
6 at c0s-l (i); 1 at 90; 
2 at 120; 2 at 

600-cell 
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specially. The method is very similar to the physical model-building procedure of 
moving circles around on a sphere until they do not overlap. The generalised inverse is 
a simple way of applying the technique of eigenvalue filtering practised in the 
geometrical refinement of crystal structures. In some cases the representative point 
moving in 3N-dimensional space may be trapped in a configuration which is a local 
maximum and not a global maximum. Setting the value of D well ahead enables the 
procedure to jump out of some such traps. 

4. Results 

Table 1 gives the maximum separations achieved for various values of N. The results up 
to N = 8 are already known to be the best possible while N = 24 and N = 120 are 
believed to be the best possible. Figures l(a)-(l) show the corresponding Schlegel 
diagrams for the connectivity of the assemblies, full lines denoting contacts and broken 
lines showing somewhat more remote approaches of one sphere to another. Probably 
the concept of the Schlegel diagram could be generalised to higher dimensions, but this 
has not been done and thus lines in the diagram overlap. In most cases the configuration 
converged to a symmetrical arrangement. There can be no guarantee that this local 
maximum represents absolutely the best packing. For example, for N = 14 two 
different configurations were found at 71.036" and 70379" which were within half a 
degree of each other. In most cases refinement was stopped when it seemed clear that a 
maximum was being approached. The fit between the observed values and those 
calculated from the face-centred-cubic packing density is reasonably close. 

5. Relationship to the three-dimensional packing of spheres 

In packing points at equal distance on the surface of a four-dimensional hypersphere we 
are effectively packing three-dimensional spheres in a three-dimensional space which is 
curved, that is, where the metric is non-linear. 

Suppose that we are examining the packing of equal circles in a plane where the 
hexagonally close-packed lattice configuration predominates (so that no less regular 
configuration approaches it in density). This predominance can be removed by 
changing the metric so that distances no longer add arithmetically and thus the best 
packing is not a lattice of regular repetitions. This change of metric can be accom- 
plished by curving the space in which the circles are embedded. This gives the Fejes 
problem, the solution to which for a given N is by no means obvious. 

Similarly, if we are examining the packings of spheres in three-dimensional space, 
lattice packings are the densest known, although they do not necessarily predominate. 
It was thought that non-lattice packings could be sampled by changing the metric, that 
is, by curving the three-dimensional space in which the spheres are embedded. This 
gives the four-dimensional Fejes problem. 

The particular value of packing density found experimentally for the closest random 
(non-lattice) packing of equal spheres is 0,6366 rt 0.0004 (Gotoh and Finney 1974), 
which is within experimental error equal to 2/7r. We may enquire whether this value is a 
chance coincidence or whether it has some fundamental significance. It is, of course, the 
mean value of the cosine and occurs in alternating current theory. 



Packing of spheres on a hypersphere 3379 

The packing density (fraction of the three-dimensional surface of the four-dimen- 
sional hypersphere filled by the N three-dimensional spheres whose centres are at least 
D apart) can be calculated from the expression SV = ( r3  sin’ 8 sin 4 )  dr  d e  d 4  d9. 
Integrated over the whole surface J d V  gives 21r’ as expected for the hypersphere. 

If we take as an index of maximum packing density the face-centred-cubic packing 
density which is 1r/J18 = 0.74048, we ca2 calculate the expected maximum values of D 
for given values of N from ND2 = 4.rr2/J2 (here D is in radians). These values are given 
in column 3 of table 1 and are seen to agree reasonably with the course of those found by 
the relaxation method. Only the most symmetrical packings for N = 5 ,  8, 20 and 120 
exceed the expected values. Tables of the coordinates 8,4 and for each packing and 
of the distances between all pairs from which the exact configurations reported here can 
be reconstructed are available from the author. 
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